Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132943

RESUMO

Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann-Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 µM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression.


Assuntos
Dieta Hiperlipídica , Dislipidemias , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colesterol na Dieta/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Células CACO-2 , Camundongos Endogâmicos C57BL , Colesterol/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
2.
Science ; 382(6671): eadf0966, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943936

RESUMO

Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes. Loss of NPC1L1 diminishes accessible plasma membrane (PM) cholesterol and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate PM cholesterol and show endoplasmic reticulum cholesterol depletion. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, the Aster pathway can be targeted with a small-molecule inhibitor to manipulate cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.


Assuntos
Colesterol na Dieta , Enterócitos , Absorção Intestinal , Proteínas de Membrana Transportadoras , Animais , Camundongos , Transporte Biológico , Colesterol na Dieta/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Enterócitos/metabolismo , Receptores X do Fígado/metabolismo , Humanos , Jejuno/metabolismo , Camundongos Knockout
3.
Cell Biochem Biophys ; 81(2): 231-242, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160861

RESUMO

In this study, we aimed to analyze the proteomics of the liver in rabbits on a high cholesterol diet (HCD). We randomly divided New Zealand white rabbits into the normal diet group and the HCD group. We established the atherosclerosis model and measured plasma cholesterol and triglycerides. The model was successfully established using ultrasound examination and histopathological staining of the intima of aorta and liver of the two groups of rabbits. The differential proteins in the rabbit liver were analyzed using Tandem Mass Tags proteomic analysis technology. Finally, we used western blot to verify the reliability of proteomics. The results showed that compared with the control group, the serum lipid levels of rats in the HCD group was significantly increased, and the pathological sections showed the formation of atherosclerotic plaques in the aorta, inflammation, and adipose lesions in the liver. Proteomic analysis of the liver revealed 149 differences in HCD-expressed protein, which is mainly involved in inflammation and regulation of lipid and sugar metabolism. In addition, we verified differentially expressed liver proteins in the HCD group using western blot. We found that HCD caused lipid accumulation, abnormal glucose metabolism, and inflammatory response in the liver.


Assuntos
Colesterol na Dieta , Hipercolesterolemia , Animais , Coelhos , Ratos , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Dieta , Hipercolesterolemia/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteômica , Reprodutibilidade dos Testes
4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108655

RESUMO

Cholesterol is an important component of cell membranes, and also a precursor for the synthesis of sex hormones, playing an important role in reproduction. However, few studies have focused on cholesterol and reproductive health. To investigate the toxic effects of different cholesterol levels on the spermatogenesis of rare minnows, we regulate the cholesterol content in fish by feeding them a high-cholesterol diet and cholesterol inhibitor pravastatin, and cholesterol levels, sex hormone (T and 11KT) levels, testis histology, sperm morphology and function, and the expression of genes related to sex hormone synthesis were investigated. The research findings indicate that increasing cholesterol levels significantly increases the liver weight and hepatic-somatic index, as well as the total cholesterol and free cholesterol levels in the testis, liver, and plasma of rare minnow, while inhibiting cholesterol has the opposite effect (p < 0.05). However, both increasing and decreasing cholesterol levels can suppress rare minnow testicular development, as evidenced by a decrease in testis weight, lowered gonadosomatic index, suppressed sex hormone levels, and reduced mature sperm count. Further exploration revealed that the expression of sex hormone synthesis-related genes, including star, cyp19a1a, and hsd11b2, was significantly affected (p < 0.05), which may be an important reason for the decrease in sex hormone synthesis and consequent inhibition of testicular development. At the same time, the fertilization ability of mature sperm in both treatment groups significantly decreased. Scanning electron microscopy and fluorescence polarization tests showed that reducing cholesterol levels significantly increased the rate of sperm head cell membrane damage, while both increasing and decreasing cholesterol levels led to a reduction in sperm cell membrane fluidity, which may be the main reason for the decrease in sperm fertilization ability. This study demonstrates that both increasing and decreasing the levels of cholesterol are detrimental to the fish spermatogenesis, providing fundamental information for the study of fish reproduction and also a reference for the causes of male reproductive dysfunction.


Assuntos
Colesterol na Dieta , Cyprinidae , Animais , Masculino , Colesterol na Dieta/metabolismo , Sêmen , Espermatogênese , Testículo/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Cyprinidae/genética
5.
Mol Nutr Food Res ; 67(2): e2200367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419336

RESUMO

SCOPE: Specific lipid molecules circulating in plasma at low concentrations have emerged as biomarkers of atherosclerotic risk. The aim of the present study is that of evaluating, in an athero-prone mouse model, how different diets can affect plasma and aorta lipidome. METHODS AND RESULTS: Thirty-six apoE knockout mice are divided in three groups and feed 12 weeks with diets differing for cholesterol and fatty acid content. Atherosclerosis is measured at the aortic sinus and aorta. Lipids are quantified in plasma and aorta with mass spectrometry. The cholesterol content of the diets is the main driver of lipid accumulation in plasma and aorta. The fatty acid composition of the diets affects plasma levels both of essential (linoleic acid) and nonessential (myristic and arachidonic acid) ones. Lipidomics show a comparable distribution, in plasma and aorta, of the main lipid components of oxidized LDL, including cholesteryl esters and lysophosphatidylcholines. Interestingly, lactosylceramide, glucosyl/galactosylceramide, and individual ceramide species are found to accumulate in diseased aortic segments. CONCLUSION: Both the cholesterol and fatty acid content of the diets profoundly affect plasma lipidome. Aorta lipidome is likewise affected with the accumulation of specific lipids known as markers of atherosclerosis.


Assuntos
Aorta , Aterosclerose , Colesterol na Dieta , Dieta , Ácidos Graxos , Lipidômica , Animais , Camundongos , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Camundongos Knockout , Colesterol na Dieta/sangue , Colesterol na Dieta/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo
6.
Front Immunol ; 13: 968366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159810

RESUMO

Excessive dietary cholesterol is preferentially stored in the liver, favoring the development of nonalcoholic steatohepatitis (NASH), characterized by progressive hepatic inflammation and fibrosis. Emerging evidence indicates a critical contribution of hepatic macrophages to NASH severity. However, the impact of cholesterol on these cells in the setting of NASH remains elusive. Here, we demonstrate that the dietary cholesterol content directly affects hepatic macrophage global gene expression. Our findings suggest that the modifications triggered by prolonged high cholesterol intake induce long-lasting hepatic damage and support the expansion of a dysfunctional pro-fibrotic restorative macrophage population even after cholesterol reduction. The present work expands the understanding of the modulatory effects of cholesterol on innate immune cell transcriptome and may help identify novel therapeutic targets for NASH intervention.


Assuntos
Hipercolesterolemia , Hepatopatia Gordurosa não Alcoólica , Animais , Colesterol/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos , Hepatopatia Gordurosa não Alcoólica/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012527

RESUMO

BACKGROUND: Recently, we established a novel rodent model of nonalcoholic steatohepatitis (NASH) with advanced fibrosis induced by a high-fat and high-cholesterol (HFC) diet containing cholic acid (CA), which is known to cause hepatotoxicity. The present study aimed to elucidate the direct impact of dietary CA on the progression of NASH induced by feeding the HFC diet. METHODS: Nine-week-old male Sprague-Dawley rats were randomly assigned to receive a normal, HFC, or CA-supplemented (0.1%, 0.5% or 2.0%, w/w) HFC diet for 9 weeks. RESULTS: Histopathological assessment revealed that the supplementation of CA dose-dependently aggravated hepatic steatosis, inflammation, and fibrosis, reaching stage 4 cirrhosis in the 2.0% CA diet group. In contrast, the rats that were fed the HFC diet without any added CA developed mild steatosis and inflammation without fibrosis. The hepatic cholesterol content and mRNA expression involved in inflammatory response and fibrogenesis was higher in a CA dose-dependent manner. The hepatic chenodeoxycholic acid levels were higher in 2.0% CA diet group than in the control, although hepatic levels of total bile acid and CA did not increase dose-dependently with CA intake. CONCLUSION: Adding CA to the HFC diet altered bile acid metabolism and inflammatory response and triggered the development of fibrosis in the rat liver.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Animais , Colesterol/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Ácido Cólico/efeitos adversos , Ácido Cólico/metabolismo , Dieta , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Inflamação/patologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Nutrients ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458205

RESUMO

Dietary cholesterol (C) is a major contributor to the endogenous C pool, and it affects the serum concentration of total C, particularly the low-density lipoprotein cholesterol (LDL-C). A high serum concentration of LDL-C is associated with an increased risk for atherosclerosis and cardiovascular diseases. This concentration is dependent on hepatic C metabolism creating a balance between C input (absorption and synthesis) and C elimination (conversion to bile acids and fecal excretion). The daily C absorption rate is determined by dietary C intake, biliary C secretion, direct trans-intestinal C excretion (TICE), and the fractional C absorption rate. Hepatic C metabolism coordinates C fluxes entering the liver via chylomicron remnants (CMR), LDL, high-density lipoproteins (HDL), hepatic C synthesis, and those leaving the liver via very low-density lipoproteins (VLDL), biliary secretion, and bile acid synthesis. The knowns and the unknowns of this C homeostasis are discussed.


Assuntos
Colesterol na Dieta , Lipoproteínas , Ácidos e Sais Biliares/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , LDL-Colesterol/metabolismo , Homeostase , Lipoproteínas/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163722

RESUMO

Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.


Assuntos
Ácidos e Sais Biliares , Taurina , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Colesterol na Dieta/metabolismo , Dieta , Fígado/metabolismo , Camundongos , Taurina/metabolismo , Taurina/farmacologia
10.
Biochem Pharmacol ; 196: 114621, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34043965

RESUMO

Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression. We describe how 27HC promotes tumor growth directly through cancer-intrinsic factors, and indirectly through its immunomodulatory roles which lead to decreased immune surveillance and increased tumor invasion. This review underscores the importance of the cholesterol metabolic pathway in cancer progression and the potential therapeutic utility of targeting this metabolic pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Hidroxicolesteróis/metabolismo , Neoplasias/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Humanos , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico
11.
Hepatol Commun ; 6(1): 12-35, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558856

RESUMO

The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related cirrhosis in the United States and globally highlights the need to better understand the mechanisms causing progression of hepatic steatosis to fibrosing steatohepatitis and cirrhosis in a small proportion of patients with NAFLD. Accumulating evidence suggests that lipotoxicity mediated by hepatic free cholesterol (FC) overload is a mechanistic driver for necroinflammation and fibrosis, characteristic of nonalcoholic steatohepatitis (NASH), in many animal models and also in some patients with NASH. Diet, lifestyle, obesity, key genetic polymorphisms, and hyperinsulinemia secondary to insulin resistance are pivotal drivers leading to aberrant cholesterol signaling, which leads to accumulation of FC within hepatocytes. FC overload in hepatocytes can lead to ER stress, mitochondrial dysfunction, development of toxic oxysterols, and cholesterol crystallization in lipid droplets, which in turn lead to hepatocyte apoptosis, necrosis, or pyroptosis. Activation of Kupffer cells and hepatic stellate cells by hepatocyte signaling and cholesterol loading contributes to this inflammation and leads to hepatic fibrosis. Cholesterol accumulation in hepatocytes can be readily prevented or reversed by statins. Observational studies suggest that use of statins in NASH not only decreases the substantially increased cardiovascular risk, but may ameliorate liver pathology. Conclusion: Hepatic FC loading may result in cholesterol-associated steatohepatitis and play an important role in the development and progression of NASH. Statins appear to provide significant benefit in preventing progression to NASH and NASH-cirrhosis. Randomized controlled trials are needed to demonstrate whether statins or statin/ezetimibe combination can effectively reverse steatohepatitis and liver fibrosis in patients with NASH.


Assuntos
Colesterol/metabolismo , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Colesterol na Dieta/metabolismo , Ezetimiba/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Homeostase , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fatores de Risco
12.
Immunity ; 54(10): 2273-2287.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644558

RESUMO

Diets high in cholesterol alter intestinal immunity. Here, we examined how the cholesterol metabolite 25-hydroxycholesterol (25-HC) impacts the intestinal B cell response. Mice lacking cholesterol 25-hydroxylase (CH25H), the enzyme generating 25-HC, had higher frequencies of immunoglobulin A (IgA)-secreting antigen-specific B cells upon immunization or infection. 25-HC did not affect class-switch recombination but rather restrained plasma cell (PC) differentiation. 25-HC was produced by follicular dendritic cells and increased in response to dietary cholesterol. Mechanistically, 25-HC restricted activation of the sterol-sensing transcription factor SREBP2, thereby regulating B cell cholesterol biosynthesis. Ectopic expression of SREBP2 in germinal center B cells induced rapid PC differentiation, whereas SREBP2 deficiency reduced PC output in vitro and in vivo. High-cholesterol diet impaired, whereas Ch25h deficiency enhanced, the IgA response against Salmonella and the resulting protection from systemic bacterial dissemination. Thus, a 25-HC-SREBP2 axis shapes the humoral response at the intestinal barrier, providing insight into the effect of high dietary cholesterol in intestinal immunity.


Assuntos
Diferenciação Celular/imunologia , Hidroxicolesteróis/metabolismo , Imunoglobulina A/imunologia , Plasmócitos/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Colesterol na Dieta/imunologia , Colesterol na Dieta/metabolismo , Hidroxicolesteróis/imunologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Plasmócitos/metabolismo
13.
Biomolecules ; 11(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439893

RESUMO

Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 µmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 µmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.


Assuntos
Suplementos Nutricionais , Síndrome de Smith-Lemli-Opitz/sangue , Síndrome de Smith-Lemli-Opitz/terapia , Vitamina E/uso terapêutico , Adolescente , Alelos , Antioxidantes/metabolismo , Comportamento , Criança , Pré-Escolar , Colesterol na Dieta/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Desidrocolesteróis/sangue , Feminino , Humanos , Lipídeos/química , Masculino , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxisteróis/metabolismo , Estudos Prospectivos , Esteróis/química , Espectrometria de Massas em Tandem , Vitamina A/metabolismo , Vitamina E/metabolismo , Adulto Jovem
14.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281217

RESUMO

BACKGROUND AND AIMS: Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS: Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS: Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS: These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol na Dieta/efeitos adversos , Ácidos Cólicos/uso terapêutico , Hipercolesterolemia/prevenção & controle , Animais , Colesterol na Dieta/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hipercolesterolemia/etiologia , Masculino , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
Ticks Tick Borne Dis ; 12(6): 101790, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34325088

RESUMO

Cholesterol is a known precursor of arthropod molecules such as the hormone 20-hydroxyecdysone and the antimicrobial boophiline, a component of tick egg wax coat. Because the cholesterol biosynthetic pathway is absent in ticks, it is necessarily obtained from the blood meal, in a still poorly understood process. In contrast, dietary cholesterol absorption is better studied in insects, and many proteins are involved in its metabolism, including Niemann-Pick C (NPC) transporter and acyl-CoA:cholesterol acyltransferase (ACAT), as well as enzymes to convert between free cholesterol and esterified cholesterol. The present work addresses the hypothesis that tick viability can be impaired by interfering with cholesterol metabolism, proposing this route as a target for novel tick control methods. Two drugs, ezetimibe (NPC inhibitor) and avasimibe (ACAT inhibitor) were added to calf blood and used to artificially feed Rhipicephalus microplus females. Results show that, after ingesting avasimibe, tick reproductive ability and egg development are impaired. Also, eggs laid by females fed with avasimibe did not hatch and were susceptible to Pseudomonas aeruginosa adhesion and biofilm formation in their surfaces. The immunoprotective potential of ACAT against ticks was also accessed using two selected ACAT peptides. Antibodies against these peptides were used to artificially feed female ticks, but no deleterious effects were observed. Taken together, data presented here support the hypothesis that enzymes and other proteins involved in cholesterol metabolism are suitable as targets for tick control methods.


Assuntos
Acetamidas , Anticolesterolemiantes , Colesterol na Dieta/metabolismo , Ezetimiba , Rhipicephalus , Sulfonamidas , Controle de Ácaros e Carrapatos , Absorção Fisiológica , Animais , Indutores do Citocromo P-450 CYP3A , Embrião não Mamífero , Feminino , Larva/crescimento & desenvolvimento , Rhipicephalus/crescimento & desenvolvimento , Controle de Ácaros e Carrapatos/métodos
16.
Nutrients ; 13(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671529

RESUMO

The number of nutrigenetic studies dedicated to the identification of single nucleotide polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has increased considerably over the last decade. However, the robustness of the evidence-based science supporting the area remains to be evaluated. The objective of this review was to present recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol metabolism and transport, and dietary intakes or interventions on circulating cholesterol concentrations, which are causally involved in cardiovascular diseases and established biomarkers of cardiovascular health. We identified recent studies (2014-2020) that reported significant SNP-diet interactions in 14 cholesterol-related genes (NPC1L1, ABCA1, ABCG5, ABCG8, APOA1, APOA2, APOA5, APOB, APOE, CETP, CYP7A1, DHCR7, LPL, and LIPC), and which replicated associations observed in previous studies. Some studies have also shown that combinations of SNPs could explain a higher proportion of variability in response to dietary interventions. Although some findings still need replication, including in larger and more diverse study populations, there is good evidence that some SNPs are consistently associated with differing circulating cholesterol concentrations in response to dietary interventions. These results could help clinicians provide patients with more personalized dietary recommendations, in order to lower their risk for cardiovascular disease.


Assuntos
Colesterol na Dieta/sangue , Colesterol/sangue , Metabolismo dos Lipídeos/genética , Polimorfismo de Nucleotídeo Único , Colesterol na Dieta/metabolismo , Regulação da Expressão Gênica , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo
17.
Toxicol Appl Pharmacol ; 415: 115430, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524446

RESUMO

Air pollutants may increase risk for cardiopulmonary disease, particularly in susceptible populations with metabolic stressors such as diabetes and unhealthy diet. We investigated effects of inhaled ozone exposure and high-cholesterol diet (HCD) in healthy Wistar and Wistar-derived Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. Male rats (4-week old) were fed normal diet (ND) or HCD for 12 weeks and then exposed to filtered air or 1.0 ppm ozone (6 h/day) for 1 or 2 days. We examined pulmonary, vascular, hematology, and inflammatory responses after each exposure plus an 18-h recovery period. In both strains, ozone induced acute bronchiolar epithelial necrosis and inflammation on histopathology and pulmonary protein leakage and neutrophilia; the protein leakage was more rapid and persistent in GK compared to Wistar rats. Ozone also decreased lymphocytes after day 1 in both strains consuming ND (~50%), while HCD increased circulating leukocytes. Ozone increased plasma thrombin/antithrombin complexes and platelet disaggregation in Wistar rats on HCD and exacerbated diet effects on serum IFN-γ, IL-6, KC-GRO, IL-13, and TNF-α, which were higher with HCD (Wistar>GK). Ex vivo aortic contractility to phenylephrine was lower in GK versus Wistar rats at baseline(~30%); ozone enhanced this effect in Wistar rats on ND. GK rats on HCD had higher aortic e-NOS and tPA expression compared to Wistar rats. Ozone increased e-NOS in GK rats on ND (~3-fold) and Wistar rats on HCD (~2-fold). These findings demonstrate ways in which underlying diabetes and HCD may exacerbate pulmonary, systemic, and vascular effects of inhaled pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Aorta Torácica/efeitos dos fármacos , Colesterol na Dieta/toxicidade , Diabetes Mellitus Tipo 2/complicações , Dieta Aterogênica/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Doenças Vasculares/induzido quimicamente , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Colesterol na Dieta/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Modelos Animais de Doenças , Mediadores da Inflamação/sangue , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Masculino , Necrose , Edema Pulmonar/sangue , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos Wistar , Doenças Vasculares/sangue , Doenças Vasculares/fisiopatologia , Vasoconstrição/efeitos dos fármacos
18.
Toxicol Appl Pharmacol ; 415: 115427, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524448

RESUMO

Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Colesterol na Dieta/toxicidade , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ozônio/toxicidade , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Colesterol na Dieta/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Exposição por Inalação , Insulina/sangue , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Wistar , Especificidade da Espécie
19.
Nat Metab ; 3(1): 59-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462514

RESUMO

Activating transcription factor (ATF)3 is known to have an anti-inflammatory function, yet the role of hepatic ATF3 in lipoprotein metabolism or atherosclerosis remains unknown. Here we show that overexpression of human ATF3 in hepatocytes reduces the development of atherosclerosis in Western-diet-fed Ldlr-/- or Apoe-/- mice, whereas hepatocyte-specific ablation of Atf3 has the opposite effect. We further show that hepatic ATF3 expression is inhibited by hydrocortisone. Mechanistically, hepatocyte ATF3 enhances high-density lipoprotein (HDL) uptake, inhibits intestinal fat and cholesterol absorption and promotes macrophage reverse cholesterol transport by inducing scavenger receptor group B type 1 (SR-BI) and repressing cholesterol 12α-hydroxylase (CYP8B1) in the liver through its interaction with p53 and hepatocyte nuclear factor 4α, respectively. Our data demonstrate that hepatocyte ATF3 is a key regulator of HDL and bile acid metabolism and atherosclerosis.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Aterosclerose/prevenção & controle , Ácidos e Sais Biliares/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteínas E/genética , Colesterol na Dieta/metabolismo , Gorduras na Dieta/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Hidrocortisona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Receptores Depuradores Classe B/metabolismo , Esteroide 12-alfa-Hidroxilase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Food Funct ; 11(7): 6091-6103, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568327

RESUMO

Ursolic acid (UA) is a triterpenoid acid widely abundant in fruits and vegetables such as apple, blueberry and cranberry. The present study was carried out to investigate the effect of UA supplementation in diet on blood cholesterol, intestinal cholesterol absorption and gut microbiota in hypercholesterolemic hamsters. A total of thirty-two hamsters were randomly assigned to four groups and given a non-cholesterol diet (NCD), a high-cholesterol diet containing 0.1% cholesterol (HCD), an HCD diet containing 0.2% UA (UAL), or an HCD diet containing 0.4% UA (UAH) for 6 weeks. Results showed that UA supplementation reduced plasma cholesterol by 15-16% and inhibited intestinal cholesterol absorption by 2.6-9.2%. The in vitro micellar cholesterol solubility experiment clearly demonstrated that UA could displace 40% cholesterol from micelles. In addition, UA decreased the ratio of Firmicutes to Bacteroidetes, whereas it enhanced the growth of short chain fatty acid (SCFA)-producing bacteria in the intestine. In conclusion, UA possessed a cholesterol-lowering activity and could favorably modulate the gut microbiota.


Assuntos
Bactérias/efeitos dos fármacos , Colesterol na Dieta/metabolismo , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Absorção Intestinal/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Bacteroidetes/efeitos dos fármacos , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/sangue , Cricetinae , Dieta , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Firmicutes/efeitos dos fármacos , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Masculino , Mesocricetus , Micelas , Distribuição Aleatória , Solubilidade , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...